A Reliable Effective Terascale Linear Learning System

Alekh Agarwal Olivier Chappelle Miroslav Dudík John Langford

U C Berkeley

Yahoo! Research
Billions of examples, millions of parameters, 1K nodes, precious little time

Want to learn a good predictor of the form: $f_w = \sum_{i=1}^{P} w_i x_i$

Subsampling smaller dataset hurts learning performance

Example: Ad-click prediction problem

- 2.1T non-zero features
- 17B samples
- 16M parameters
- 1Knodes
Several tricks play a role, two central to the system

Hadoop + AllReduce

- AllReduce great to sum gradients, average parameters, ...
- AllReduce doesn’t require new job per iteration
- Hadoop good to schedule problems close to data
- Hadoop adds fault-tolerance, speculative execution
How we do it

Several tricks play a role, two central to the system

Hadoop + AllReduce
- AllReduce great to sum gradients, average parameters, ...
- AllReduce doesn’t require new job per iteration
- Hadoop good to schedule problems close to data
- Hadoop adds fault-tolerance, speculative execution

Hybrid optimization
- Initial few passes with online learning+averaging for a reasonable solution
- Follow by L-BFGS passes with gradient summation for rapid convergence
How we perform

2.1T features, 17B samples, 16M parameters, 1K nodes, 1-2 hours training time